Ridge回归 高斯

来自决策链云智库
Zeroclanzhang讨论 | 贡献2024年1月19日 (五) 19:15的版本
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
Ridge Regression Gaussian.png
节点状态
Windows / Windows 10 Win10及以上可用
V1.0.2部署
Ridge回归_高斯Ridge Regression Gaussian.svg
节点开发者决策链算法研发部 (Dev.Team-DPS)
节点英文名Ridge Regression_Gaussian
功能主类别数据分析
英文缩写RidgeGaussian
功能亚类别回归分析
节点类型数据挖掘
开发语言R
节点简介

Ridge回归又称岭回归,专用于共线性数据分析的有偏估计回归方法,对回归算法正则化的一个例子。正则化是一种方法,它通过增加额外参数来解决过拟合问题,从而减少模型的参数,限制复杂度。该方法是在模型估计中增加了惩罚项,所有参数的平方和。能将一些不必要变量的回归系数压缩为零进而从模型中剔除,达到变量筛选的目的。高斯Ridge回归则是针对多元线性回归来做Ridge回归,因变量预测y应当是符合高斯分布(正态分布)。

用途:用来处理线性回归模型中的多重共线性问题的,处理高斯数据。

参数:选择高斯分布因变量,连续型数值自变量。

端口数量与逻辑控制(PC)
Input-入口4个
Output-出口3个
Loop-支持循环
If/Switch-支持逻辑判断
输入输出
可生成图片类型(推荐)
相关节点
上一节点Ridge回归_生存状态
下一节点Ridge回归_泊松




查找其他类别的节点,请参考以下列表