可生成图片类型(推荐)
可生成数据表类型(推荐)
节点状态 | / Win10及以上可用
在V1.0部署
|
---|---|
采样方法 | |
节点开发者 | 决策链算法研发部 (Dev.Team-DPS) |
节点英文名 | Sampler |
功能主类别 | 机器学习 |
英文缩写 | Sampler |
功能亚类别 | 分类训练器 |
节点类型 | 数据挖掘 |
开发语言 | Python |
节点简介 | |
用于多数据集的机器学习基础评估。包含混淆矩阵,准确度(Accuracy),F1-Score,Matthews Correlation Coefficient(MCC)等基础评估算法。 | |
端口数量与逻辑控制(PC) | |
Input-入口 | 3个 |
Output-出口 | 2个 |
Loop-支持循环 | 否 |
If/Switch-支持逻辑判断 | 否 |
输入输出 | |
相关节点 | |
上一节点 | 交叉验证结果整合 |
下一节点 | 决策树 |
相关网站 |
在信号处理中,采样是将连续时间信号转换为离散时间信号的过程。一个常见的例子是将声波转换为一系列“样本”。样本是在时间和/或空间中的某一点上信号的值;这个定义与统计学中用法不同,后者指的是这样的一组值。采样器是从连续信号中提取样本的子系统或操作。理论上的理想采样器在所需的点上产生等于连续信号瞬时值的样本。可以通过将样本序列通过重建滤波器进行处理,重建原始信号,直到奈奎斯特极限(Nyquist limit)引证错误:<ref>
标签无效;没有name(名称)的ref(参考)必须有内容。
该节点使用Python编写,调用imblearn包[1]。以下为示例代码:
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
sampler = RandomOverSampler()
sampler = RandomUnderSampler()
查找其他类别的节点,请参考以下列表