可生成图片类型(推荐)
可生成数据表类型(推荐)
节点状态 | / Win10及以上可用
在V1.0部署
|
---|---|
CatBoost | |
节点开发者 | 决策链算法研发部 (Dev.Team-DPS) |
节点英文名 | CatBoost |
功能主类别 | 机器学习 |
英文缩写 | CatBoost |
功能亚类别 | 分类训练器 |
节点类型 | 数据挖掘 |
开发语言 | Python |
节点简介 | |
CatBoost是一种基于梯度提升树的机器学习算法,由Yandex开发。它专门用于处理分类问题,并具有许多独特的特性和优势。 CatBoost旨在提供高性能、可扩展且易于使用的机器学习解决方案。 | |
端口数量与逻辑控制(PC) | |
Input-入口 | 2个 |
Output-出口 | 3个 |
Loop-支持循环 | 否 |
If/Switch-支持逻辑判断 | 否 |
输入输出 | |
相关节点 | |
上一节点 | XGBoost |
下一节点 | Logistic分类器 |
相关网站 |
CatBoost是Yandex开发的开源软件库。它提供了一个梯度增强框架,其中尝试使用与经典算法相比的排列驱动替代方案来解决分类特征[1]。它适用于Linux、Windows、macOS,并且可用于 Python、R,并且使用 catboost 构建的模型可用于C++、Java、C#、Rust、Core ML中的预测、ONNX和PMML。源代码已根据Apache 许可证获得许可,并可在 GitHub 上获取。
该节点使用Python编写,调用catboost包[2]。以下为示例代码:
from catboost import CatBoostClassifier
model = CatBoostClassifier(
iterations=15,
verbose=3
)
model.fit(
X_train, y_train,
cat_features=cat_features,
eval_set=(X_validation, y_validation),
)
如果想使用完全代码请参考:https://github.com/catboost/tutorials/
拟合后,模型可以用于预测样本的类别,可以在通用预测模块实现内外部测试集的预测。
查找其他类别的节点,请参考以下列表