Zeroclanzhang(讨论 | 贡献) 无编辑摘要 |
无编辑摘要 |
||
第28行: | 第28行: | ||
}} | }} | ||
在[[统计学]]领域中,'''麦克尼马尔检验'''(McNemar's test)是一种应用于[[Blocking (statistics)|成对]][[名义数据]]的统计检验方法。它用于2 × 2的[[列联表]],其中特征为[[二分]],对配对的受试对象进行匹配,以确定行和列边际频率是否相等(即是否存在"边际同质性")。该检验以[[Quinn McNemar]]命名,他于1947年首次提出此方法。<ref name=McNemar1947>{{Cite journal| doi = 10.1007/BF02295996| volume = 12| issue = 2| pages = 153–157| last = McNemar| first = Quinn| title = Note on the sampling error of the difference between correlated proportions or percentages| journal = Psychometrika| date = June 18, 1947| pmid = 20254758| s2cid = 46226024}}</ref> 该检验在遗传学中的应用是用于检测[[连锁不平衡]]的[[传输不平衡检验]]。<ref name=Spielman93>{{cite journal |author1=Spielman RS |author2 = McGinnis RE | author3= Ewens WJ | author-link3= Warren Ewens | title=Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM) |journal=Am J Hum Genet |volume=52 |issue=3 |pages=506–16 |date=Mar 1993 |pmid=8447318 |pmc=1682161 }}</ref> | |||
在医学科学中评估[[Medical test|诊断测试]]时常用的参数是[[灵敏度和特异性]]。灵敏度(或召回率)是指测试准确识别出患病人群的能力。特异性是指测试准确识别出未患病人群的能力。 | |||
现在假设对同一组患者进行了两项测试。并且假设这些测试的灵敏度和特异性相同。在这种情况下,人们可能会被这些发现所误导,认为两项测试是等效的。然而,情况可能并非如此。为此,我们必须研究患病和未患病的患者(通过参考测试)。我们还必须找出这两项测试之间的不一致之处。这正是麦克尼马尔检验的基础。这项检验比较了两个诊断测试对同一组患者的灵敏度和特异性。<ref>{{Cite journal|last=Hawass|first=N E|date=April 1997|title=Comparing the sensitivities and specificities of two diagnostic procedures performed on the same group of patients.|journal=The British Journal of Radiology|volume=70|issue=832|pages=360–366|doi=10.1259/bjr.70.832.9166071|pmid=9166071|issn=0007-1285}}</ref> | |||
=='''定义'''== | |||
该检验应用于一个2 × 2的列联表,该表格统计了对''N''个受试者进行的两项测试的结果,如下所示。 | |||
{| class="wikitable" style="text-align:center; margin:1em auto;" | |||
|- | |||
| || Test 2 positive || Test 2 negative || Row total | |||
|- | |||
| Test 1 positive || ''a'' || ''b'' || ''a'' + ''b'' | |||
|- | |||
| Test 1 negative || ''c'' || ''d'' || ''c'' + ''d'' | |||
|- | |||
| Column total || ''a'' + ''c'' || ''b'' + ''d'' || ''N'' | |||
|} | |||
边际同质性的[[零假设]]指的是每个结果的两个边际概率相同,即''p''<sub>''a''</sub> + ''p''<sub>''b''</sub> = ''p''<sub>''a''</sub> + ''p''<sub>''c''</sub> 以及 ''p''<sub>''c''</sub> + ''p''<sub>''d''</sub> = ''p''<sub>''b''</sub> + ''p''<sub>''d''</sub>。 | |||
因此,零假设和备选假设为<ref name=McNemar1947/> | |||
: [math] | |||
\begin{align} | |||
H_0 & :~p_b=p_c \\ | |||
H_1 & :~p_b \ne p_c | |||
\end{align} | |||
[/math] | |||
这里''p''<sub>''a''</sub>等表示对应单元格中发生概率的理论值。 | |||
麦克尼马尔的[[检验统计量]]为: | |||
:[math]\chi^2 = {(b-c)^2 \over b+c}.[/math] | |||
在零假设下,如果不一致单元格(b和c单元格)的数量足够大,[math]\chi^2[/math]将服从自由度为1的[[卡方分布]]。如果[math]\chi^2[/math]结果是[[统计显著性|显著的]],这提供了拒绝零假设的充分证据,支持''p<sub>b</sub>'' ≠ ''p<sub>c</sub>''的备选假设,这意味着边际比例彼此显著不同。 | |||
===变体=== | |||
如果''b''或''c''较小(''b'' + ''c'' < 25),则[math]\chi^2[/math]不能很好地近似为卡方分布。{{Citation needed|date=June 2011}} 这时可以使用精确的二项式检验,其中''b''与参数为''n'' = ''b'' + ''c'' 和 ''p'' = 0.5的[[二项分布]]进行比较。实际上,精确二项式检验评估了不一致性''b''和''c''的不平衡。为了获得双侧P值,应该将极端尾部的P值乘以2。对于''b'' ≥ ''c'': | |||
: [math] \text{exact-P-value} = 2 \sum_{i=b}^{n} {n\choose i}0.5^i(1-0.5)^{n-i},[/math] | |||
这实际上是''p'' = 0.5和''n'' = ''b'' + ''c''的二项分布[[累积分布函数]]的两倍。 | |||
Edwards<ref name=Edwards1948>{{Cite journal| volume = 13| issue = 3| pages = 185–187| last = Edwards| first = A| title = Note on the "correction for continuity" in testing the significance of the difference between correlated proportions| journal = Psychometrika| date = 1948| doi=10.1007/bf02289261| pmid = 18885738| s2cid = 33607853}}</ref> 提出了麦克尼马尔检验的连续性校正版本,以近似二项式精确P值: | |||
:[math]\chi^2 = {(|b-c|-1)^2 \over b+c}.[/math] | |||
中位P值的麦克尼马尔检验(中位P值二项式检验)是通过从精确的单侧P值中减去观察到的''b''的概率的一半,然后加倍以获得双侧中位P值:<ref name=Lancaster1961>{{Cite journal| volume = 56| issue = 294| pages = 223–234| last = Lancaster| first = H.O.| title = Significance tests in discrete distributions.| journal = J Am Stat Assoc| date = 1961| doi=10.1080/01621459.1961.10482105}}</ref><ref name=Fagerland2013>{{Cite journal | |||
| volume = 13 | |||
| pages = 91 | |||
| last1 = Fagerland| first1 = M.W. | |||
| last2 = Lydersen| first2 = S. | |||
| last3 = Laake| first3 = P. | |||
| title = The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional | |||
| journal = BMC Medical Research Methodology | |||
| date = 2013 | |||
| doi=10.1186/1471-2288-13-91| pmid = 23848987 | |||
| pmc = 3716987 | |||
| doi-access = free | |||
}}</ref> | |||
: [math] \text{mid-p-value} = 2 \left( \sum_{i=b}^n {n\choose i} 0.5^i (1-0.5)^{n-i} - 0.5 {n\choose b} 0.5^b (1-0.5)^{n-b} \right)[/math] | |||
这等同于: | |||
: [math] \text{mid-p-value} = \text{exact-p-value} - {n\choose b}0.5^b(1-0.5)^{n-b}[/math] | |||
其中第二项是二项分布[[probability mass function]],且''n'' = ''b'' + ''c''。二项分布函数在常见软件包中都可轻松获得,因此可以轻松计算McNemar中P检验。<ref name=Fagerland2013 /> | |||
传统建议是当''b'' + ''c'' < 25时使用精确的二项式检验。然而,模拟研究显示,精确的二项式检验和连续性校正的McNemar检验都过于保守。<ref name=Fagerland2013 /> 当''b'' + ''c'' < 6时,精确P值总是超过常见的显著性水平0.05。原始的McNemar检验最有力,但通常稍微自由。中P版本几乎和渐近McNemar检验一样有力,并且没有发现超过名义显著性水平。 | |||
=='''例子'''== | |||
在第一个例子中,研究者试图确定一种药物对特定疾病的效果。有314名患者,在使用药物前后都进行了诊断(疾病:''存在''或''不存在''),这意味着每个样本可以用4种组合中的1种来描述。 | |||
表中给出了个体的计数,治疗前的诊断(疾病:''存在''或''不存在'')在行中给出,治疗后的诊断在列中给出。测试要求在治疗前后的测量中包含相同的受试者(匹配对)。 | |||
{| class="wikitable" style="text-align:center; margin:1em auto;" | |||
|- | |||
| || '''治疗后:''' 存在|| '''治疗后:''' 不存在|| 行总计 | |||
|- | |||
| '''治疗前:''' 存在|| 101 || 121 || 222 | |||
|- | |||
| '''治疗前:''' 不存在|| 59 || 33 || 92 | |||
|- | |||
| 列总计 || 160 || 154 || 314 | |||
|} | |||
在这个例子中,"边际同质性"的零假设意味着治疗没有效果。根据上述数据,McNemar检验统计量: | |||
:[math]\chi^2 = {(121 - 59)^2 \over {121 + 59}}[/math] | |||
的值是21.35,这在零假设所暗示的分布中极不可能出现(''p'' < 0.001)。因此,该测试为拒绝无治疗效果的零假设提供了强有力的证据。 | |||
第二个例子说明了渐近McNemar检验和其他替代方法之间的差异。<ref name=Fagerland2013 /> 数据表的格式如前所述,但单元格中的数字不同: | |||
{| class="wikitable" style="text-align:center; margin:1em auto;" | |||
|- | |||
| || '''治疗后:''' 存在|| '''治疗后:''' 不存在|| 行总计 | |||
|- | |||
| '''治疗前:''' 存在|| 59 || 6 || 65 | |||
|- | |||
| '''治疗前:''' 不存在|| 16 || 80 || 96 | |||
|- | |||
| 列总计 || 75 || 86 || 161 | |||
|} | |||
对于这些数据,样本量(161名患者)并不小,但McNemar检验和其他版本的结果不同。精确的二项式检验给出''p'' = 0.053,带连续性校正的McNemar检验给出[math]\chi^2[/math] = 3.68和''p'' = 0.055。渐近McNemar检验给出[math]\chi^2[/math] = 4.55和''p'' = 0.033,中P McNemar检验给出''p'' = 0.035。在这第二个例子中,McNemar检验和中P版本都为统计学上显著的治疗效果提供了更强的证据。 | |||
=='''讨论'''== | |||
解释McNemar检验时的一个有趣观察是,主对角线的元素不会对决定(在上述示例中)治疗前或治疗后条件是否更有利产生贡献。因此,即使''a'' + ''b'' + ''c'' + ''d''的对数很大(参见上面的第二个例子),''b'' + ''c''的和可以很小,上述测试的统计功效也可以很低。 | |||
麦克尼马尔检验的扩展存在于成对数据间不必然独立的情况;相反,存在成对数据的集群,集群内的成对数据可能不独立,但不同集群间保持独立性。<ref>{{Cite journal | doi = 10.1002/bimj.201000035 | title = 关于成群匹配成对二元数据的测试的注记 | year = 2010 | journal = 生物统计学杂志 | pages = 638–652 | volume = 52 | issue = 5 | last1 = 杨 | first1 = Z. | last2 = 孙 | first2 = X. | last3 = 哈丁 | first3 = J.W. | pmid = 20976694| s2cid = 29461324 }}</ref> 一个例子是分析牙科手术的效果;在这种情况下,一对对应于对患者的单个牙齿的治疗;同一患者两颗牙齿的治疗效果可能不独立,但不同患者两颗牙齿的治疗效果更可能独立。<ref>{{Cite journal | doi = 10.1002/sim.1438 | url = http://www3.interscience.wiley.com/journal/104545274/abstract | archive-url = https://archive.today/20130105071155/http://www3.interscience.wiley.com/journal/104545274/abstract | url-status = dead | archive-date = January 5, 2013 | title = 成群匹配成对数据的分析 | year = 2003 | journal = 医学统计学 | pages = 2417–28 | volume = 22 | issue = 15 | last1 = Durkalski | first1 = V.L. | last2 = Palesch | first2 = Y.Y. | last3 = Lipsitz | first3 = S.R. | last4 = Rust | first4 = P.F. | access-date = April 1, 2009 | pmid = 12872299 | s2cid = 25909362 }}</ref> | |||
===配对信息=== | |||
在1970年代,人们推测保留扁桃体可能有助于预防[[霍奇金淋巴瘤]]。约翰·赖斯写道:<ref name=Rice1995>{{cite book | year=1995| author=Rice, John | title = Mathematical Statistics and Data Analysis | url=https://archive.org/details/mathematicalstat00rice_559| url-access=limited| edition=Second | publisher= [[Duxbury Press]] | location=Belmont, California | isbn=978-0-534-20934-6 | pages=[https://archive.org/details/mathematicalstat00rice_559/page/n510 492]–494 }}</ref> | |||
<blockquote> | |||
85名霍奇金患者[...]有一个同性别的兄弟姐妹 | |||
没有患病,且年龄在 | |||
患者年龄的5年内。这些研究者提出了以下表格: | |||
::[math] | |||
\begin{array}{c|c|c} | |||
\hline & \text{扁桃体切除术} & \text{无扁桃体切除术} \\ | |||
\hline\text{霍奇金} & 41 & 44 \\ | |||
\hline\text{对照} & 33 & 52 | |||
\end{array} | |||
[/math] | |||
他们计算了一个[[卡方检验|卡方统计量]][...] [他们]在分析中忽略了配对,从而犯了错误。[...] [他们的]样本不是独立的,因为兄弟姐妹是成对的[...] 我们建立了一个展示配对的表格: | |||
: [math] | |||
\begin{array}{cc} | |||
& \text{兄弟姐妹} \\ | |||
\text{患者} & | |||
\begin{array}{c|c|c} | |||
\hline & \text{无扁桃体切除术} & \text{扁桃体切除术} \\ | |||
\hline\text{无扁桃体切除术} & 37 & 7 \\ | |||
\hline\text{扁桃体切除术} & 15 & 26 | |||
\end{array} | |||
\end{array} | |||
[/math] | |||
</blockquote> | |||
麦克内马尔检验可以应用于第二张表格。注意,第二张表格中的数字总和是85——兄弟姐妹的“对”数——而第一张表格中的数字总和是170的两倍——个体的数量。第二张表格提供的信息比第一张更多。第一张表格中的数字可以通过使用第二张表格中的数字找到,但反之则不行。第一张表格中的数字仅提供了第二张表格中数字的边际总和。麦克内马尔检验允许比较15和7对兄弟姐妹以前接受过不同的扁桃体治疗,作为与假设相关,同时忽略了信息较少的37和26对兄弟姐妹以前都接受过治疗或都没有。 | |||
== '''相关测试''' == | |||
* 二项式[[sign test|符号检验]]为McNemar检验提供了一个精确测试。 | |||
* [[Cochran's Q test|科克兰Q检验]]是McNemar检验的扩展,适用于两种以上的“处理”。 | |||
* [[Liddell's exact test|利德尔精确检验]]是McNemar检验的一个精确替代。<ref>{{cite journal|jstor=2988087|pages=295–304|last1=Liddell|first1=D.|title=Practical Tests of 2 × 2 Contingency Tables|volume=25|issue=4|journal=Journal of the Royal Statistical Society|year=1976|doi=10.2307/2988087 }}</ref><ref>{{cite web|url=http://rimarcik.com/en/navigator/z-nominal.html |title=Maxwell's test, McNemar's test, Kappa test |publisher=Rimarcik.com |access-date=2012-11-22}}</ref> | |||
* [[Stuart–Maxwell test|斯图尔特-马克斯韦尔检验]]是McNemar检验的不同推广,用于测试超过两行/列的正方形表中的边际同质性。<ref>{{cite web|url=http://www2.sas.com/proceedings/forum2008/382-2008.pdf|title=Generalized McNemar's Test for Homogeneity of the Marginal Distributions|first1=Xuezheng|last1=Sun|first2=Zhao|last2=Yang|publisher=[[SAS (software)|SAS]] Global Forum|year=2008}}</ref><ref>{{cite journal|jstor=2333387|title=A Test for Homogeneity of the Marginal Distributions in a Two-Way Classification|journal=Biometrika|volume=42|issue=3/4|pages=412–416|first1=Alan|last1=Stuart|year=1955|doi=10.1093/biomet/42.3-4.412}}</ref><ref>{{cite journal|title=Comparing the Classification of Subjects by Two Independent Judges|journal=The British Journal of Psychiatry|volume=116|issue=535|pages=651–655|first1=A.E.|last1=Maxwell|year=1970|doi=10.1192/bjp.116.535.651|pmid=5452368|s2cid=9211848 }}</ref> | |||
* [[Bhapkar's test|巴普卡检验]] (1966) 是斯图尔特-马克斯韦尔检验的一个更强大的替代品,<ref>{{cite web|url=http://www.john-uebersax.com/stat/mcnemar.htm#bhapkar |title=McNemar Tests of Marginal Homogeneity |publisher=John-uebersax.com |date=2006-08-30 |access-date=2012-11-22}}</ref><ref>{{cite journal|jstor=2283057|title=A Note on the Equivalence of Two Test Criteria for Hypotheses in Categorical Data|journal=Journal of the American Statistical Association|volume=61|issue=313|pages=228–235|first1=V.P.|last1= Bhapkar|year=1966|doi=10.1080/01621459.1966.10502021}}</ref> 但它倾向于偏自由。现有方法的竞争性替代品是可用的。<ref>{{Cite journal | |||
| doi = 10.1177/0092861512442021 | |||
| title = Testing Marginal Homogeneity in Matched-Pair Polytomous Data | |||
| year = 2012 | |||
| journal = Therapeutic Innovation & Regulatory Science | |||
| pages = 434–438 | |||
| volume = 46 | |||
| issue = 4 | |||
| last1 = Yang | first1 = Z. | |||
| last2 = Sun | first2 = X. | |||
| last3 = Hardin | first3 = J.W.| s2cid = 123109340 | |||
}}</ref> | |||
* McNemar检验是[[Cochran–Mantel–Haenszel test|科克兰-曼特尔-汉斯泽尔检验]]的一个特例;它相当于一个CMH检验,每对N对中有一个阶层,在每个阶层中,有一个2x2表显示成对的二元响应。<ref>{{cite book |last=Agresti |first=Alan |date=2002 |title=Categorical Data Analysis |url=https://mathdept.iut.ac.ir/sites/mathdept.iut.ac.ir/files/AGRESTI.PDF |location=Hooken, New Jersey |publisher= John Wiley & Sons, Inc. |page=413 |isbn=978-0-471-36093-3}}</ref> | |||
== '''节点使用的R语言示例代码''' == | |||
=== McNemar检验 === | |||
<syntaxhighlight lang="R"> | |||
mcnemar.test(x, y = NULL, correct = TRUE) | |||
</syntaxhighlight> | |||
== '''节点使用指南''' == | |||
* 一种非参数统计检验,用于配对名义数据 | |||
* 适用于研究设计中的“前-后”比较,或者任何两个条件在相同的样本上得到的二分类结果 | |||
* 通常用于判断两种治疗方法、诊断测试或任何两种条件下是否存在差异 | |||
=== 方法选择 === | |||
* 无方法选择 | |||
=== 参数配置 === | |||
* 统计变量1:选择二分类变量 | |||
* 统计变量2:选择一个或多个二分类变量,每个变量将与变量1做一次McNemar检验 | |||
* 筛选阈值:选择需要的P值阈值,节点会自动将满足阈值的变量筛选出,数据集也会同步筛选出满足的变量。 | |||
* 统计变量1和统计变量2要规避复用 | |||
* 此算法兼容空值 | |||
=== 注意事项 === | |||
* McNemar检验不适用于独立样本,也不适用于多于两个时间点的数据 | |||
* 当数据包含大量配对中只有一个条件为正面或负面的情况时,标准的McNemar检验可能过于保守 | |||
== '''引用''' == | |||
{{Reflist}} | |||
{{Navplate AlgorithmNodeList}} | {{Navplate AlgorithmNodeList}} | ||
[[Category:频数表检验]] | [[Category:频数表检验]] |
2024年1月24日 (三) 16:55的版本
节点状态 | / Win10及以上可用
在V1.0部署
|
---|---|
McNemar检验 | |
节点开发者 | 决策链算法研发部 (Dev.Team-DPS) |
节点英文名 | McNemar Test |
功能主类别 | 数据分析 |
英文缩写 | McNeTest |
功能亚类别 | 频数表检验 |
节点类型 | 数据挖掘 |
开发语言 | R |
节点简介 | |
McNemar检验是用于配对名义数据的统计检验, 又称非独立样本比率数的卡方检验。它应用于具有二分特征的2 × 2列联表,变量需要是二分类, 具有匹配的主题对,以确定行和列的边际频率是否相等,即是否存在边际同质性。例如:由失败变成功或由否变是的比例是否相等, 探讨事件发生前后表格内比例是否有显著改变。 用途:一种非参数统计方法,用于分析两个配对的分类变量之间的关系,特别是在前后重复测量设计中。也用于分析在两个时间点或两种不同条件下,同一组受试者的分类结果是否有显著差异。 参数:选择二分类变量 | |
端口数量与逻辑控制(PC) | |
Input-入口 | 4个 |
Output-出口 | 3个 |
Loop-支持循环 | 是 |
If/Switch-支持逻辑判断 | 否 |
输入输出 | |
相关节点 | |
上一节点 | Mantel-Haenszel检验 |
下一节点 | G检验 |
在统计学领域中,麦克尼马尔检验(McNemar's test)是一种应用于成对名义数据的统计检验方法。它用于2 × 2的列联表,其中特征为二分,对配对的受试对象进行匹配,以确定行和列边际频率是否相等(即是否存在"边际同质性")。该检验以Quinn McNemar命名,他于1947年首次提出此方法。[1] 该检验在遗传学中的应用是用于检测连锁不平衡的传输不平衡检验。[2]
在医学科学中评估诊断测试时常用的参数是灵敏度和特异性。灵敏度(或召回率)是指测试准确识别出患病人群的能力。特异性是指测试准确识别出未患病人群的能力。
现在假设对同一组患者进行了两项测试。并且假设这些测试的灵敏度和特异性相同。在这种情况下,人们可能会被这些发现所误导,认为两项测试是等效的。然而,情况可能并非如此。为此,我们必须研究患病和未患病的患者(通过参考测试)。我们还必须找出这两项测试之间的不一致之处。这正是麦克尼马尔检验的基础。这项检验比较了两个诊断测试对同一组患者的灵敏度和特异性。[3]
定义
该检验应用于一个2 × 2的列联表,该表格统计了对N个受试者进行的两项测试的结果,如下所示。
Test 2 positive | Test 2 negative | Row total | |
Test 1 positive | a | b | a + b |
Test 1 negative | c | d | c + d |
Column total | a + c | b + d | N |
边际同质性的零假设指的是每个结果的两个边际概率相同,即pa + pb = pa + pc 以及 pc + pd = pb + pd。
因此,零假设和备选假设为[1]
- [math]
\begin{align} H_0 & :~p_b=p_c \\ H_1 & :~p_b \ne p_c \end{align} [/math]
这里pa等表示对应单元格中发生概率的理论值。
麦克尼马尔的检验统计量为:
- [math]\chi^2 = {(b-c)^2 \over b+c}.[/math]
在零假设下,如果不一致单元格(b和c单元格)的数量足够大,[math]\chi^2[/math]将服从自由度为1的卡方分布。如果[math]\chi^2[/math]结果是显著的,这提供了拒绝零假设的充分证据,支持pb ≠ pc的备选假设,这意味着边际比例彼此显著不同。
变体
如果b或c较小(b + c < 25),则[math]\chi^2[/math]不能很好地近似为卡方分布。, June 2011 {{citation}}
: Cite has empty unknown parameters: |cat2=
, |cat-date2=
, |cat3=
, and |cat-date3=
(help); Missing or empty |title=
(help); Unknown parameter |cat-date=
ignored (help); Unknown parameter |cat=
ignored (help)[citation needed] 这时可以使用精确的二项式检验,其中b与参数为n = b + c 和 p = 0.5的二项分布进行比较。实际上,精确二项式检验评估了不一致性b和c的不平衡。为了获得双侧P值,应该将极端尾部的P值乘以2。对于b ≥ c:
- [math] \text{exact-P-value} = 2 \sum_{i=b}^{n} {n\choose i}0.5^i(1-0.5)^{n-i},[/math]
这实际上是p = 0.5和n = b + c的二项分布累积分布函数的两倍。
Edwards[4] 提出了麦克尼马尔检验的连续性校正版本,以近似二项式精确P值:
- [math]\chi^2 = {(|b-c|-1)^2 \over b+c}.[/math]
中位P值的麦克尼马尔检验(中位P值二项式检验)是通过从精确的单侧P值中减去观察到的b的概率的一半,然后加倍以获得双侧中位P值:[5][6]
- [math] \text{mid-p-value} = 2 \left( \sum_{i=b}^n {n\choose i} 0.5^i (1-0.5)^{n-i} - 0.5 {n\choose b} 0.5^b (1-0.5)^{n-b} \right)[/math]
这等同于:
- [math] \text{mid-p-value} = \text{exact-p-value} - {n\choose b}0.5^b(1-0.5)^{n-b}[/math]
其中第二项是二项分布probability mass function,且n = b + c。二项分布函数在常见软件包中都可轻松获得,因此可以轻松计算McNemar中P检验。[6]
传统建议是当b + c < 25时使用精确的二项式检验。然而,模拟研究显示,精确的二项式检验和连续性校正的McNemar检验都过于保守。[6] 当b + c < 6时,精确P值总是超过常见的显著性水平0.05。原始的McNemar检验最有力,但通常稍微自由。中P版本几乎和渐近McNemar检验一样有力,并且没有发现超过名义显著性水平。
例子
在第一个例子中,研究者试图确定一种药物对特定疾病的效果。有314名患者,在使用药物前后都进行了诊断(疾病:存在或不存在),这意味着每个样本可以用4种组合中的1种来描述。 表中给出了个体的计数,治疗前的诊断(疾病:存在或不存在)在行中给出,治疗后的诊断在列中给出。测试要求在治疗前后的测量中包含相同的受试者(匹配对)。
治疗后: 存在 | 治疗后: 不存在 | 行总计 | |
治疗前: 存在 | 101 | 121 | 222 |
治疗前: 不存在 | 59 | 33 | 92 |
列总计 | 160 | 154 | 314 |
在这个例子中,"边际同质性"的零假设意味着治疗没有效果。根据上述数据,McNemar检验统计量:
- [math]\chi^2 = {(121 - 59)^2 \over {121 + 59}}[/math]
的值是21.35,这在零假设所暗示的分布中极不可能出现(p < 0.001)。因此,该测试为拒绝无治疗效果的零假设提供了强有力的证据。
第二个例子说明了渐近McNemar检验和其他替代方法之间的差异。[6] 数据表的格式如前所述,但单元格中的数字不同:
治疗后: 存在 | 治疗后: 不存在 | 行总计 | |
治疗前: 存在 | 59 | 6 | 65 |
治疗前: 不存在 | 16 | 80 | 96 |
列总计 | 75 | 86 | 161 |
对于这些数据,样本量(161名患者)并不小,但McNemar检验和其他版本的结果不同。精确的二项式检验给出p = 0.053,带连续性校正的McNemar检验给出[math]\chi^2[/math] = 3.68和p = 0.055。渐近McNemar检验给出[math]\chi^2[/math] = 4.55和p = 0.033,中P McNemar检验给出p = 0.035。在这第二个例子中,McNemar检验和中P版本都为统计学上显著的治疗效果提供了更强的证据。
讨论
解释McNemar检验时的一个有趣观察是,主对角线的元素不会对决定(在上述示例中)治疗前或治疗后条件是否更有利产生贡献。因此,即使a + b + c + d的对数很大(参见上面的第二个例子),b + c的和可以很小,上述测试的统计功效也可以很低。
麦克尼马尔检验的扩展存在于成对数据间不必然独立的情况;相反,存在成对数据的集群,集群内的成对数据可能不独立,但不同集群间保持独立性。[7] 一个例子是分析牙科手术的效果;在这种情况下,一对对应于对患者的单个牙齿的治疗;同一患者两颗牙齿的治疗效果可能不独立,但不同患者两颗牙齿的治疗效果更可能独立。[8]
配对信息
在1970年代,人们推测保留扁桃体可能有助于预防霍奇金淋巴瘤。约翰·赖斯写道:[9]
85名霍奇金患者[...]有一个同性别的兄弟姐妹 没有患病,且年龄在 患者年龄的5年内。这些研究者提出了以下表格:
- [math]
\begin{array}{c|c|c} \hline & \text{扁桃体切除术} & \text{无扁桃体切除术} \\ \hline\text{霍奇金} & 41 & 44 \\ \hline\text{对照} & 33 & 52 \end{array} [/math] 他们计算了一个卡方统计量[...] [他们]在分析中忽略了配对,从而犯了错误。[...] [他们的]样本不是独立的,因为兄弟姐妹是成对的[...] 我们建立了一个展示配对的表格:
- [math]
\begin{array}{cc} & \text{兄弟姐妹} \\ \text{患者} & \begin{array}{c|c|c} \hline & \text{无扁桃体切除术} & \text{扁桃体切除术} \\ \hline\text{无扁桃体切除术} & 37 & 7 \\ \hline\text{扁桃体切除术} & 15 & 26 \end{array} \end{array} [/math]
麦克内马尔检验可以应用于第二张表格。注意,第二张表格中的数字总和是85——兄弟姐妹的“对”数——而第一张表格中的数字总和是170的两倍——个体的数量。第二张表格提供的信息比第一张更多。第一张表格中的数字可以通过使用第二张表格中的数字找到,但反之则不行。第一张表格中的数字仅提供了第二张表格中数字的边际总和。麦克内马尔检验允许比较15和7对兄弟姐妹以前接受过不同的扁桃体治疗,作为与假设相关,同时忽略了信息较少的37和26对兄弟姐妹以前都接受过治疗或都没有。
相关测试
- 二项式符号检验为McNemar检验提供了一个精确测试。
- 科克兰Q检验是McNemar检验的扩展,适用于两种以上的“处理”。
- 利德尔精确检验是McNemar检验的一个精确替代。[10][11]
- 斯图尔特-马克斯韦尔检验是McNemar检验的不同推广,用于测试超过两行/列的正方形表中的边际同质性。[12][13][14]
- 巴普卡检验 (1966) 是斯图尔特-马克斯韦尔检验的一个更强大的替代品,[15][16] 但它倾向于偏自由。现有方法的竞争性替代品是可用的。[17]
- McNemar检验是科克兰-曼特尔-汉斯泽尔检验的一个特例;它相当于一个CMH检验,每对N对中有一个阶层,在每个阶层中,有一个2x2表显示成对的二元响应。[18]
节点使用的R语言示例代码
McNemar检验
mcnemar.test(x, y = NULL, correct = TRUE)
节点使用指南
- 一种非参数统计检验,用于配对名义数据
- 适用于研究设计中的“前-后”比较,或者任何两个条件在相同的样本上得到的二分类结果
- 通常用于判断两种治疗方法、诊断测试或任何两种条件下是否存在差异
方法选择
- 无方法选择
参数配置
- 统计变量1:选择二分类变量
- 统计变量2:选择一个或多个二分类变量,每个变量将与变量1做一次McNemar检验
- 筛选阈值:选择需要的P值阈值,节点会自动将满足阈值的变量筛选出,数据集也会同步筛选出满足的变量。
- 统计变量1和统计变量2要规避复用
- 此算法兼容空值
注意事项
- McNemar检验不适用于独立样本,也不适用于多于两个时间点的数据
- 当数据包含大量配对中只有一个条件为正面或负面的情况时,标准的McNemar检验可能过于保守
引用
- ↑ 1.0 1.1 McNemar, Quinn (June 18, 1947). "Note on the sampling error of the difference between correlated proportions or percentages". Psychometrika. 12 (2): 153–157. doi:10.1007/BF02295996. PMID 20254758. S2CID 46226024.
- ↑ Spielman RS; McGinnis RE; Ewens WJ (Mar 1993). "Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM)". Am J Hum Genet. 52 (3): 506–16. PMC 1682161. PMID 8447318.
- ↑ Hawass, N E (April 1997). "Comparing the sensitivities and specificities of two diagnostic procedures performed on the same group of patients". The British Journal of Radiology. 70 (832): 360–366. doi:10.1259/bjr.70.832.9166071. ISSN 0007-1285. PMID 9166071.
- ↑ Edwards, A (1948). "Note on the "correction for continuity" in testing the significance of the difference between correlated proportions". Psychometrika. 13 (3): 185–187. doi:10.1007/bf02289261. PMID 18885738. S2CID 33607853.
- ↑ Lancaster, H.O. (1961). "Significance tests in discrete distributions". J Am Stat Assoc. 56 (294): 223–234. doi:10.1080/01621459.1961.10482105.
- ↑ 6.0 6.1 6.2 6.3 Fagerland, M.W.; Lydersen, S.; Laake, P. (2013). "The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional". BMC Medical Research Methodology. 13: 91. doi:10.1186/1471-2288-13-91. PMC 3716987. PMID 23848987.
- ↑ 杨, Z.; 孙, X.; 哈丁, J.W. (2010). "关于成群匹配成对二元数据的测试的注记". 生物统计学杂志. 52 (5): 638–652. doi:10.1002/bimj.201000035. PMID 20976694. S2CID 29461324.
- ↑ Durkalski, V.L.; Palesch, Y.Y.; Lipsitz, S.R.; Rust, P.F. (2003). "成群匹配成对数据的分析". 医学统计学. 22 (15): 2417–28. doi:10.1002/sim.1438. PMID 12872299. S2CID 25909362. Archived from the original on January 5, 2013. Retrieved April 1, 2009.
- ↑ Rice, John (1995). Mathematical Statistics and Data Analysis (Second ed.). Belmont, California: Duxbury Press. pp. 492–494. ISBN 978-0-534-20934-6.
- ↑ Liddell, D. (1976). "Practical Tests of 2 × 2 Contingency Tables". Journal of the Royal Statistical Society. 25 (4): 295–304. doi:10.2307/2988087. JSTOR 2988087.
- ↑ "Maxwell's test, McNemar's test, Kappa test". Rimarcik.com. Retrieved 2012-11-22.
- ↑ Sun, Xuezheng; Yang, Zhao (2008). "Generalized McNemar's Test for Homogeneity of the Marginal Distributions" (PDF). SAS Global Forum.
- ↑ Stuart, Alan (1955). "A Test for Homogeneity of the Marginal Distributions in a Two-Way Classification". Biometrika. 42 (3/4): 412–416. doi:10.1093/biomet/42.3-4.412. JSTOR 2333387.
- ↑ Maxwell, A.E. (1970). "Comparing the Classification of Subjects by Two Independent Judges". The British Journal of Psychiatry. 116 (535): 651–655. doi:10.1192/bjp.116.535.651. PMID 5452368. S2CID 9211848.
- ↑ "McNemar Tests of Marginal Homogeneity". John-uebersax.com. 2006-08-30. Retrieved 2012-11-22.
- ↑ Bhapkar, V.P. (1966). "A Note on the Equivalence of Two Test Criteria for Hypotheses in Categorical Data". Journal of the American Statistical Association. 61 (313): 228–235. doi:10.1080/01621459.1966.10502021. JSTOR 2283057.
- ↑ Yang, Z.; Sun, X.; Hardin, J.W. (2012). "Testing Marginal Homogeneity in Matched-Pair Polytomous Data". Therapeutic Innovation & Regulatory Science. 46 (4): 434–438. doi:10.1177/0092861512442021. S2CID 123109340.
- ↑ Agresti, Alan (2002). Categorical Data Analysis (PDF). Hooken, New Jersey: John Wiley & Sons, Inc. p. 413. ISBN 978-0-471-36093-3.
查找其他类别的节点,请参考以下列表