可生成图片类型(推荐)
可生成数据表类型(推荐)
无编辑摘要 |
|||
| 第38行: | 第38行: | ||
}}</ref>。以下为示例代码: | }}</ref>。以下为示例代码: | ||
<syntaxhighlight lang="Python"> | <syntaxhighlight lang="Python"> | ||
import | import lightgbm as lgb | ||
import numpy as np | |||
data = np.random.rand( | |||
label = np.random.randint(2, size= | data = np.random.rand(500, 10) # 500 entities, each contains 10 features | ||
label = np.random.randint(2, size=500) # binary target | |||
train_data = lgb.Dataset(data, label=label) | |||
num_round = 10 | num_round = 10 | ||
bst = | bst = lgb.train(param, train_data, num_round, valid_sets=train_data) | ||
</syntaxhighlight> | </syntaxhighlight> | ||
如果想使用完全代码请参考:https://xgboost.readthedocs.io/en/stable/python | 如果想使用完全代码请参考:https://xgboost.readthedocs.io/en/stable/python | ||
| 节点状态 | 在V1.0部署
|
|---|---|
LightGBM | |
| 节点开发者 | 决策链算法研发部 (Dev.Team-DPS) |
| 节点英文名 | Boosting_LightGBM Learner |
| 功能主类别 | 机器学习 |
| 英文缩写 | LightGBM |
| 功能亚类别 | 分类训练器 |
| 节点类型 | 数据挖掘 |
| 开发语言 | Python |
| 节点简介 | |
LightGBM是一种基于梯度提升树(Gradient Boosting Tree)的机器学习算法,由微软开发。它是一种高效且可扩展的梯度提升树框架,用于解决分类和回归问题。LightGBM的设计目标是提供快速、准确和高效的模型训练和预测。 | |
| 端口数量与逻辑控制(PC) | |
| Input-入口 | 2个 |
| Output-出口 | 3个 |
| Loop-支持循环 | 否 |
| If/Switch-支持逻辑判断 | 否 |
| 输入输出 | |
| 相关节点 | |
| 上一节点 | Logistic分类器 |
| 下一节点 | 随机森林 |
该节点使用Python编写,调用xgboost包[1]。以下为示例代码:
import lightgbm as lgb
import numpy as np
data = np.random.rand(500, 10) # 500 entities, each contains 10 features
label = np.random.randint(2, size=500) # binary target
train_data = lgb.Dataset(data, label=label)
num_round = 10
bst = lgb.train(param, train_data, num_round, valid_sets=train_data)
如果想使用完全代码请参考:https://xgboost.readthedocs.io/en/stable/python
拟合后,模型可以用于预测样本的类别,可以在通用预测模块实现内外部测试集的预测。
查找其他类别的节点,请参考以下列表