可生成图片类型(推荐)
可生成数据表类型(推荐)
无编辑摘要 |
|||
第31行: | 第31行: | ||
CatBoost是Yandex开发的开源软件库。它提供了一个梯度增强框架,其中尝试使用与经典算法相比的排列驱动替代方案来解决分类特征<ref>Zhang, Yixiao; Zhao, Zhongguo; Zheng, Jianghua (2020). "CatBoost: A new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China." ''Journal of Hydrology'' 588: 125087. Elsevier.</ref>。它适用于Linux、Windows、macOS,并且可用于 Python、R,并且使用 catboost 构建的模型可用于C++、Java、C#、Rust、Core ML中的预测、ONNX和PMML。源代码已根据Apache 许可证获得许可,并可在 GitHub 上获取。 | CatBoost是Yandex开发的开源软件库。它提供了一个梯度增强框架,其中尝试使用与经典算法相比的排列驱动替代方案来解决分类特征<ref>Zhang, Yixiao; Zhao, Zhongguo; Zheng, Jianghua (2020). "CatBoost: A new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China." ''Journal of Hydrology'' 588: 125087. Elsevier.</ref>。它适用于Linux、Windows、macOS,并且可用于 Python、R,并且使用 catboost 构建的模型可用于C++、Java、C#、Rust、Core ML中的预测、ONNX和PMML。源代码已根据Apache 许可证获得许可,并可在 GitHub 上获取。 | ||
==示例代码- | ==示例代码-XGBoost分类节点== | ||
该节点使用Python编写,调用xgboost包<ref>Chen, Tianqi; Guestrin, Carlos (2016). "Xgboost: A scalable tree boosting system". In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 785–794.</ref>。以下为示例代码: | |||
<syntaxhighlight lang="Python"> | <syntaxhighlight lang="Python"> | ||
import xgboost as xgb | |||
# Load Pandas Data | |||
data = np.random.rand(5, 10) # 5 entities, each contains 10 features | |||
label = np.random.randint(2, size=5) # binary target | |||
) | dtrain = xgb.DMatrix(data, label=label) | ||
num_round = 10 | |||
bst = xgb.train(param, dtrain, num_round, evallist) | |||
</syntaxhighlight> | </syntaxhighlight> | ||
如果想使用完全代码请参考:https://github.com/catboost/tutorials/ | 如果想使用完全代码请参考:https://github.com/catboost/tutorials/ |
节点状态 | / Win10及以上可用
在V1.0部署
|
---|---|
XGBoost | |
节点开发者 | 决策链算法研发部 (Dev.Team-DPS) |
节点英文名 | Boosting_XGBoost |
功能主类别 | 机器学习 |
英文缩写 | XGBoost |
功能亚类别 | 分类训练器 |
节点类型 | 数据挖掘 |
开发语言 | Python |
节点简介 | |
XGBoost(eXtreme Gradient Boosting)是一种梯度提升树算法的变体,它在梯度提升树的基础上进行了改进和优化。 XGBoost在各种机器学习竞赛和实际应用中表现优秀,被广泛应用于分类、回归和排名等问题。 | |
端口数量与逻辑控制(PC) | |
Input-入口 | 2个 |
Output-出口 | 3个 |
Loop-支持循环 | 否 |
If/Switch-支持逻辑判断 | 否 |
输入输出 | |
相关节点 | |
上一节点 | AdaBoost |
下一节点 | CatBoost |
相关网站 |
CatBoost是Yandex开发的开源软件库。它提供了一个梯度增强框架,其中尝试使用与经典算法相比的排列驱动替代方案来解决分类特征[1]。它适用于Linux、Windows、macOS,并且可用于 Python、R,并且使用 catboost 构建的模型可用于C++、Java、C#、Rust、Core ML中的预测、ONNX和PMML。源代码已根据Apache 许可证获得许可,并可在 GitHub 上获取。
该节点使用Python编写,调用xgboost包[2]。以下为示例代码:
import xgboost as xgb
# Load Pandas Data
data = np.random.rand(5, 10) # 5 entities, each contains 10 features
label = np.random.randint(2, size=5) # binary target
dtrain = xgb.DMatrix(data, label=label)
num_round = 10
bst = xgb.train(param, dtrain, num_round, evallist)
如果想使用完全代码请参考:https://github.com/catboost/tutorials/
拟合后,模型可以用于预测样本的类别,可以在通用预测模块实现内外部测试集的预测。
查找其他类别的节点,请参考以下列表