McNemar检验:修订间差异

来自决策链云智库
无编辑摘要
无编辑摘要
第7行: 第7行:
|productionstate={{图标文件|Win}} / {{图标文件|W10}} Win10及以上可用
|productionstate={{图标文件|Win}} / {{图标文件|W10}} Win10及以上可用
|productionstatedesc=在[[Update:DecisionLinnc 1.0.0.8|V1.0]]部署
|productionstatedesc=在[[Update:DecisionLinnc 1.0.0.8|V1.0]]部署
|nodeenglishname=[[Has english name::McNemar Test]]
|nodeenglishname=McNemar Test
|abbreviation=[[Has abbreviation::McNeTest]]
|abbreviation=McNeTest
|funcmaincategory=数据分析
|funcmaincategory=数据分析
|funcsubcategory=[[DataAGM Lv1 Cat::频数表检验]]
|funcsubcategory=[[DataAGM Lv1 Cat::频数表检验]]

2024年1月19日 (五) 19:03的版本

McNemar Test.png
节点状态
Windows / Windows 10 Win10及以上可用
V1.0部署
McNemar检验McNemar Test.svg
节点开发者决策链算法研发部 (Dev.Team-DPS)
节点英文名McNemar Test
功能主类别数据分析
英文缩写McNeTest
功能亚类别频数表检验
节点类型数据挖掘
开发语言R
节点简介

McNemar检验是用于配对名义数据的统计检验, 又称非独立样本比率数的卡方检验。它应用于具有二分特征的2 × 2列联表,变量需要是二分类, 具有匹配的主题对,以确定行和列的边际频率是否相等,即是否存在边际同质性。例如:由失败变成功或由否变是的比例是否相等, 探讨事件发生前后表格内比例是否有显著改变。

用途:一种非参数统计方法,用于分析两个配对的分类变量之间的关系,特别是在前后重复测量设计中。也用于分析在两个时间点或两种不同条件下,同一组受试者的分类结果是否有显著差异。

参数:选择二分类变量

端口数量与逻辑控制(PC)
Input-入口4个
Output-出口3个
Loop-支持循环
If/Switch-支持逻辑判断
输入输出
可生成图片类型(推荐)
可生成数据表类型(推荐)
相关节点
上一节点Mantel-Haenszel检验
下一节点G检验




查找其他类别的节点,请参考以下列表