可生成图片类型(推荐)
可生成数据表类型(推荐)
(→历史) |
|||
第34行: | 第34行: | ||
随机决策森林的一般方法最初由Ho在1995年提出<ref>{{cite journal |last1=Ho |first1=Tin Kam |title=Random decision forests |journal=Proceedings of the 3rd International Conference on Document Analysis and Recognition |volume=1 |pages=278–282 |year=1995 |publisher=IEEE}}</ref>。 Ho证明了使用倾斜超平面进行树的分割的森林可以在增长过程中提高准确性,同时不会遭受过度训练的问题,只要森林在随机选择的特征维度上进行限制。随后的一项研究<ref>{{cite journal |last1=Breiman |first1=Leo |title=Random forests |journal=Machine Learning |volume=45 |issue=1 |pages=5–32 |year=2001}}</ref>得出了类似的结论,即只要其他分割方法在随机选择的特征维度上被强制不敏感,它们的行为也是类似的。需要注意的是,这种更复杂分类器(更大的森林)几乎单调地变得更准确的观察结果,与常见的观念相反,即分类器的复杂性在达到一定准确性水平后会受到过拟合的影响。随机决策森林对过度训练的抵抗力的解释可以在Kleinberg的随机判别理论中找到<ref>{{Cite web |url=https://en.wikipedia.org/wiki/Random_forest |title=Random forest |website=Wikipedia |access-date=2024-01-17}}</ref>。 | 随机决策森林的一般方法最初由Ho在1995年提出<ref>{{cite journal |last1=Ho |first1=Tin Kam |title=Random decision forests |journal=Proceedings of the 3rd International Conference on Document Analysis and Recognition |volume=1 |pages=278–282 |year=1995 |publisher=IEEE}}</ref>。 Ho证明了使用倾斜超平面进行树的分割的森林可以在增长过程中提高准确性,同时不会遭受过度训练的问题,只要森林在随机选择的特征维度上进行限制。随后的一项研究<ref>{{cite journal |last1=Breiman |first1=Leo |title=Random forests |journal=Machine Learning |volume=45 |issue=1 |pages=5–32 |year=2001}}</ref>得出了类似的结论,即只要其他分割方法在随机选择的特征维度上被强制不敏感,它们的行为也是类似的。需要注意的是,这种更复杂分类器(更大的森林)几乎单调地变得更准确的观察结果,与常见的观念相反,即分类器的复杂性在达到一定准确性水平后会受到过拟合的影响。随机决策森林对过度训练的抵抗力的解释可以在Kleinberg的随机判别理论中找到<ref>{{Cite web |url=https://en.wikipedia.org/wiki/Random_forest |title=Random forest |website=Wikipedia |access-date=2024-01-17}}</ref>。 | ||
==示例代码- | ==示例代码-随机森林分类节点== | ||
该节点使用Python编写,调用scikit-learn包<ref>{{cite journal |author=Kramer, Oliver |title=Scikit-learn |journal=Machine learning for evolution strategies |pages=45--53 |year=2016 |publisher=Springer }}</ref>。以下为示例代码: | 该节点使用Python编写,调用scikit-learn包<ref>{{cite journal |author=Kramer, Oliver |title=Scikit-learn |journal=Machine learning for evolution strategies |pages=45--53 |year=2016 |publisher=Springer }}</ref>。以下为示例代码: | ||
<syntaxhighlight lang="Python"> | <syntaxhighlight lang="Python"> | ||
from sklearn import | from sklearn.ensemble import RandomForestClassifier | ||
X = | from sklearn.datasets import make_classification | ||
X, y = make_classification(n_samples=1000, n_features=4, | |||
clf = | n_informative=2, n_redundant=0, | ||
random_state=0, shuffle=False) | |||
clf = RandomForestClassifier(max_depth=2, random_state=0) | |||
clf.fit(X, y) | |||
RandomForestClassifier(...) | |||
print(clf.predict([[0, 0, 0, 0]])) | |||
</syntaxhighlight> | </syntaxhighlight> | ||
节点状态 | PC可用
在 V1.0部署
|
---|---|
随机森林 | |
节点开发者 | 决策链算法研发部 (Dev.Team-DPS) |
节点英文名 | 随机森林 |
功能主类别 | 机器学习 |
英文缩写 | RF_Model |
功能亚类别 | 分类训练器 |
节点类型 | 数据挖掘 |
开发语言 | Python |
节点简介 | |
随机森林(Random Forest)是一种基于集成学习的机器学习算法,由多个决策树组成。它通过对训练数据集进行有放回的随机抽样(bootstrap采样),并在每个决策树上进行随机特征选择,来构建多个决策树模型。最终的预测结果是基于所有决策树的投票或平均结果。 | |
端口数量与逻辑控制(PC) | |
Input-入口 | 2个 |
Output-出口 | 3个 |
Loop-支持循环 | 否 |
If/Switch-支持逻辑判断 | 否 |
输入输出 | |
相关节点 | |
上一节点 | LightGBM |
下一节点 | 朴素贝叶斯 |
相关网站 |
随机森林是一种用于分类、回归和其他任务的集成学习方法,通过在训练时构建大量决策树来进行操作。对于分类任务,随机森林的输出是大多数树选择的类别。对于回归任务,返回各个树的均值或平均预测。随机森林可以纠正决策树过度拟合训练集的缺点。
随机决策森林的一般方法最初由Ho在1995年提出[1]。 Ho证明了使用倾斜超平面进行树的分割的森林可以在增长过程中提高准确性,同时不会遭受过度训练的问题,只要森林在随机选择的特征维度上进行限制。随后的一项研究[2]得出了类似的结论,即只要其他分割方法在随机选择的特征维度上被强制不敏感,它们的行为也是类似的。需要注意的是,这种更复杂分类器(更大的森林)几乎单调地变得更准确的观察结果,与常见的观念相反,即分类器的复杂性在达到一定准确性水平后会受到过拟合的影响。随机决策森林对过度训练的抵抗力的解释可以在Kleinberg的随机判别理论中找到[3]。
该节点使用Python编写,调用scikit-learn包[4]。以下为示例代码:
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=1000, n_features=4,
n_informative=2, n_redundant=0,
random_state=0, shuffle=False)
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
RandomForestClassifier(...)
print(clf.predict([[0, 0, 0, 0]]))
拟合后,模型可以用于预测样本的类别,可以在通用预测模块实现内外部测试集的预测。
查找其他类别的节点,请参考以下列表