可生成图片类型(推荐)
可生成数据表类型(推荐)
Zeroclanzhang(讨论 | 贡献) 无编辑摘要 |
Zeroclanzhang(讨论 | 贡献) 无编辑摘要 |
||
第21行: | 第21行: | ||
|nodeavailabletablelist=Table_For_Downstream | |nodeavailabletablelist=Table_For_Downstream | ||
|nodeconfiguration=VariableList;DropManu;Text | |nodeconfiguration=VariableList;DropManu;Text | ||
|nodeinputports=WorkFlow-Control | |nodeinputports=WorkFlow-Control 🠊;Transfer-Table ■ | ||
|nodeoutputports=WorkFlow-Control | |nodeoutputports=WorkFlow-Control 🠊;Transfer-Model ▶;Transfer-Table ■ | ||
|statsapewikiurl=https://wiki.statsape.com/朴素贝叶斯 | |statsapewikiurl=https://wiki.statsape.com/朴素贝叶斯 | ||
|previousnode=[[随机森林]] | |previousnode=[[随机森林]] |
节点状态 | PC可用
在 V1.0部署
|
---|---|
朴素贝叶斯 | |
节点开发者 | 决策链算法研发部 (Dev.Team-DPS) |
节点英文名 | 朴素贝叶斯 |
功能主类别 | 机器学习 |
英文缩写 | N_Bayes |
功能亚类别 | 分类训练器 |
节点类型 | 数据挖掘 |
开发语言 | Python |
节点简介 | |
朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理的机器学习算法,常用于解决分类问题。它假设特征之间是相互独立的(朴素假设),并利用贝叶斯定理计算后验概率,从而进行分类预测。/p> | |
端口数量与逻辑控制(PC) | |
Input-入口 | 2个 |
Output-出口 | 3个 |
Loop-支持循环 | 否 |
If/Switch-支持逻辑判断 | 否 |
输入输出 | |
相关节点 | |
上一节点 | 随机森林 |
下一节点 | 通用预测模块 |
相关网站 |
查找其他类别的节点,请参考以下列表