可生成图片类型(推荐)
可生成数据表类型(推荐)
无编辑摘要 |
|||
第31行: | 第31行: | ||
==示例代码- | ==示例代码-采样方法节点== | ||
该节点使用Python编写,调用imblearn包<ref>{{cite journal |author=Kramer, Oliver |title=Scikit-learn |journal=Machine learning for evolution strategies |pages=45--53 |year=2016 |publisher=Springer }}</ref>。以下为示例代码: | |||
<syntaxhighlight lang="Python"> | <syntaxhighlight lang="Python"> | ||
from | from imblearn.over_sampling import RandomOverSampler | ||
from | from imblearn.under_sampling import RandomUnderSampler | ||
sampler = RandomOverSampler() | |||
sampler = RandomUnderSampler() | |||
</syntaxhighlight> | </syntaxhighlight> | ||
=='''节点使用指南'''== | =='''节点使用指南'''== |
节点状态 | / Win10及以上可用
在V1.0部署
|
---|---|
采样方法 | |
节点开发者 | 决策链算法研发部 (Dev.Team-DPS) |
节点英文名 | Sampler |
功能主类别 | 机器学习 |
英文缩写 | Sampler |
功能亚类别 | 分类训练器 |
节点类型 | 数据挖掘 |
开发语言 | Python |
节点简介 | |
用于多数据集的机器学习基础评估。包含混淆矩阵,准确度(Accuracy),F1-Score,Matthews Correlation Coefficient(MCC)等基础评估算法。 | |
端口数量与逻辑控制(PC) | |
Input-入口 | 3个 |
Output-出口 | 2个 |
Loop-支持循环 | 否 |
If/Switch-支持逻辑判断 | 否 |
输入输出 | |
相关节点 | |
上一节点 | 交叉验证结果整合 |
下一节点 | 决策树 |
相关网站 |
该节点使用Python编写,调用imblearn包[1]。以下为示例代码:
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
sampler = RandomOverSampler()
sampler = RandomUnderSampler()
查找其他类别的节点,请参考以下列表