可生成图片类型(推荐)
可生成数据表类型(推荐)
(→节点使用指南) |
无编辑摘要 |
||
第47行: | 第47行: | ||
# 有些概念很难学习,因为决策树不容易表达它们,例如异或、奇偶校验或多路复用器问题。 | # 有些概念很难学习,因为决策树不容易表达它们,例如异或、奇偶校验或多路复用器问题。 | ||
# 如果某些类占主导地位,决策树学习器会创建有偏差的树。因此,建议在拟合决策树之前平衡数据集。 | # 如果某些类占主导地位,决策树学习器会创建有偏差的树。因此,建议在拟合决策树之前平衡数据集。 | ||
=== 参考文献 === | |||
{{reflist}} | |||
==示例代码-决策树分类节点== | ==示例代码-决策树分类节点== | ||
第78行: | 第81行: | ||
* 最大叶节点数:以最佳优先的方式种植一棵树。最佳节点定义为杂质的相对减少。如果没有,则叶节点数量不受限制。 | * 最大叶节点数:以最佳优先的方式种植一棵树。最佳节点定义为杂质的相对减少。如果没有,则叶节点数量不受限制。 | ||
* 最小不纯度衰减阈值:如果分裂导致杂质减少大于或等于该值,则节点将被分裂。 | * 最小不纯度衰减阈值:如果分裂导致杂质减少大于或等于该值,则节点将被分裂。 | ||
{{Navplate AlgorithmNodeList}} | {{Navplate AlgorithmNodeList}} | ||
[[Category:分类训练器]] | [[Category:分类训练器]] |
节点状态 | PC可用
在 V1.0部署
|
---|---|
决策树 | |
节点开发者 | 决策链算法研发部 (Dev.Team-DPS) |
节点英文名 | 决策树 |
功能主类别 | 机器学习 |
英文缩写 | DT_C45 |
功能亚类别 | 分类训练器 |
节点类型 | 数据挖掘 |
开发语言 | Python |
节点简介 | |
决策树算法是一种基于树结构的有监督机器学习算法,用于解决分类和回归问题。它基于一系列的决策规则来学习和预测数据的目标变量。 决策树通过对特征进行逐步分割来构建树结构,每个内部节点表示一个特征,每个叶节点表示一个预测类别或数值。 | |
端口数量与逻辑控制(PC) | |
Input-入口 | 2个 |
Output-出口 | 3个 |
Loop-支持循环 | 否 |
If/Switch-支持逻辑判断 | 否 |
输入输出 | |
相关节点 | |
上一节点 | 导入测试集 |
下一节点 | 支持向量机 |
相关网站 |
决策树通常用于运筹学,特别是决策分析,以帮助确定最有可能达到目标的策略,但也是机器学习中的一种流行工具[1]。机器学习中的决策树是一种用于分类和回归的非参数监督学习方法。目标是创建一个模型,通过学习从数据特征推断出的简单决策规则来预测目标变量的值。树可以看作是分段常数近似。
决策树的一些优点是:
决策树的缺点包括:
该节点使用Python编写,调用scikit-learn包[1]。以下为示例代码:
from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
拟合后,模型可以用于预测样本的类别,可以在通用预测模块实现内外部测试集的预测。
查找其他类别的节点,请参考以下列表