可生成图片类型(推荐)
可生成数据表类型(推荐)
Zeroclanzhang(讨论 | 贡献) 无编辑摘要 |
Zeroclanzhang(讨论 | 贡献) 无编辑摘要 |
||
第2行: | 第2行: | ||
|nodename=广义相加模型_逻辑 | |nodename=广义相加模型_逻辑 | ||
|nodeimage=Generalized Additive Model_Logistic.png | |nodeimage=Generalized Additive Model_Logistic.png | ||
|icon=Generalized Additive Model_Logistic.svg | |||
|simpleicon=Generalized Additive Model_Logistic_Pure.svg | |||
|developer=Dev.Team-DPS | |developer=Dev.Team-DPS | ||
|productionstate=PC可用 | |productionstate=PC可用 | ||
第19行: | 第21行: | ||
|nodeavailabletablelist=Table_For_Downstream | |nodeavailabletablelist=Table_For_Downstream | ||
|nodeconfiguration=VariableList | |nodeconfiguration=VariableList | ||
|nodeinputports=WorkFlow-Control | |nodeinputports=WorkFlow-Control 🠶;Transfer-Variable ◆;Transfer-Table ■ | ||
|nodeoutputports=WorkFlow-Control | |nodeoutputports=WorkFlow-Control 🠶;Transfer-Table ■ | ||
|statsapewikiurl=https://wiki.statsape.com/广义相加模型_逻辑 | |statsapewikiurl=https://wiki.statsape.com/广义相加模型_逻辑 | ||
|previousnode=[[广义相加模型_高斯]] | |previousnode=[[广义相加模型_高斯]] | ||
|nextnode=[[广义估计方程_高斯]] | |nextnode=[[广义估计方程_高斯]] | ||
}} | }} | ||
节点状态 | PC可用
在 V1.0部署
|
---|---|
广义相加模型_逻辑 | |
节点开发者 | 决策链算法研发部 (Dev.Team-DPS) |
节点英文名 | 广义相加模型 逻辑 |
功能主类别 | 数据分析 |
英文缩写 | GAM_Logistic |
功能亚类别 | 回归分析 |
节点类型 | 数据挖掘 |
开发语言 | R |
节点简介 | |
广义相加模型是一种自由灵活的统计模型,它可以用来探测到非线性回归的影响。允许在未知因变量与自变量之间关系的情况下,使用非线性平滑项来拟合模型。非参数平滑项是把自变量划分成多个连续的区间,每一个区间都用单独的线性函数或非线性的低阶多项式函数来拟合。其生成的回归线为平稳、光滑的曲线。 逻辑回归是一种用于解决二分类(0或1)问题的机器学习方法,用于估计某种事物的可能性。原理是用逻辑函数把线性回归的结果映射到(0,1),该模型中的参数或系数通常通过最大似然估计方法进行估算。 用途:用于处理预测变量和响应变量之间复杂的非线性关系,处理各种复杂的二分类问题。 参数:选择二分类因变量,数值型曲线拟合变量,和自变量 | |
端口数量与逻辑控制(PC) | |
Input-入口 | 5个 |
Output-出口 | 2个 |
Loop-支持循环 | 是 |
If/Switch-支持逻辑判断 | 否 |
输入输出 | |
相关节点 | |
上一节点 | 广义相加模型_高斯 |
下一节点 | 广义估计方程_高斯 |
相关网站 |
查找其他类别的节点,请参考以下列表