可生成图片类型(推荐)
可生成数据表类型(推荐)
Zeroclanzhang(讨论 | 贡献) 无编辑摘要 |
Zeroclanzhang(讨论 | 贡献) 无编辑摘要 |
||
第1行: | 第1行: | ||
{{Infobox nodebasic|nodename=随机森林|nodeimage=Random Forest.png|developer=Dev.Team-DPS|productionstate=PC可用|productionstatedesc=在[[ | {{Infobox nodebasic | ||
|nodename=随机森林 | |||
|nodeimage=Random Forest.png | |||
|developer=Dev.Team-DPS | |||
|productionstate=PC可用 | |||
|productionstatedesc=在[[DecisionLinnc | V1.0]]部署 | |||
|nodeenglishname=[[Has english name::Random Forest]] | |||
|abbreviation=[[Has abbreviation::RF_Model]] | |||
|funcmaincategory=机器学习 | |||
|funcsubcategory=[[DataML Lv1 Cat::分类训练器]] | |||
|nodecategory=数据挖掘 | |||
|nodeinterpretor=Python | |||
|nodeshortdescription=<p>随机森林(Random Forest)是一种基于集成学习的机器学习算法,由多个决策树组成。它通过对训练数据集进行有放回的随机抽样(bootstrap采样),并在每个决策树上进行随机特征选择,来构建多个决策树模型。最终的预测结果是基于所有决策树的投票或平均结果。</p> | |||
|nodeinputnumber=2 | |||
|nodeoutputnumber=3 | |||
|nodeloopsupport=否 | |||
|nodeifswitchsupport=否 | |||
|nodeavailableplotlist=nodenoplotoutput | |||
|nodeavailabletablelist= | |||
|nodeconfiguration= | |||
|nodeinputports=WorkFlow-Control ▶;Transfer-Table ■ | |||
|nodeoutputports=WorkFlow-Control ▶;Transfer-Table ■ | |||
|statsapewikiurl=https://wiki.statsape.com/随机森林 | |||
|previousnode=[[LightGBM]] | |||
|nextnode=[[随机森林]] | |||
}} | |||
{{Navplate AlgorithmNodeList}} | |||
[[Category:分类训练器]] |
节点状态 | PC可用
在 V1.0部署
|
---|---|
随机森林 | |
节点开发者 | 决策链算法研发部 (Dev.Team-DPS) |
节点英文名 | 随机森林 |
功能主类别 | 机器学习 |
英文缩写 | RF_Model |
功能亚类别 | 分类训练器 |
节点类型 | 数据挖掘 |
开发语言 | Python |
节点简介 | |
随机森林(Random Forest)是一种基于集成学习的机器学习算法,由多个决策树组成。它通过对训练数据集进行有放回的随机抽样(bootstrap采样),并在每个决策树上进行随机特征选择,来构建多个决策树模型。最终的预测结果是基于所有决策树的投票或平均结果。 | |
端口数量与逻辑控制(PC) | |
Input-入口 | 2个 |
Output-出口 | 3个 |
Loop-支持循环 | 否 |
If/Switch-支持逻辑判断 | 否 |
输入输出 | |
相关节点 | |
上一节点 | LightGBM |
下一节点 | 随机森林 |
相关网站 |
属性“Nodeicon”(作为页面类型)与输入值“File:”包含无效字符或不完整,并因此在查询或注释过程期间导致意外结果。
查找其他类别的节点,请参考以下列表