梯度提升树:修订间差异

来自决策链云智库
无编辑摘要
 
无编辑摘要
第1行: 第1行:
{{Infobox nodebasic|nodename=梯度提升树|nodeimage=Boosting_GBDT.png|developer=Dev.Team-DPS|productionstate=PC可用|productionstatedesc=在[[DecisionTree | V1.0]]部署|nodeenglishname=[[Has english name::Boosting_GBDT]]|abbreviation=GBDT|funcmaincategory=机器学习|funcsubcategory=[[DataML Lv1 Cat::分类训练器]]|nodecategory=数据挖掘|nodeinterpretor=Python|nodeshortdescription=<p>梯度提升树(Gradient Boosting Tree)是一种集成学习算法,通过迭代地训练弱学习器(通常是决策树),并将它们组合成一个强大的预测模型。与其他集成学习方法(如随机森林)不同,梯度提升树是通过优化损失函数的梯度来逐步改进模型的。</p>|nodeinputnumber=2|nodeoutputnumber=3|nodeloopsupport=否|nodeifswitchsupport=否|nodeavailableplotlist=nodenoplotoutput|nodeavailabletablelist=|nodeconfiguration=|nodeinputports=WorkFlow-Control ▶;Transfer-Table ■|nodeoutputports=WorkFlow-Control ▶;Transfer-Table ■|statsapewikiurl=https://wiki.statsape.com/梯度提升树_Plus|previousnode=[[支持向量机]]|nextnode=[[AdaBoost]]}}{{Navplate AlgorithmNodeList}}[[Category:分类训练器]]
{{Infobox nodebasic  
|nodename=梯度提升树
|nodeimage=Boosting_GBDT.png
|developer=Dev.Team-DPS
|productionstate=PC可用
|productionstatedesc=在[[DecisionLinnc | V1.0]]部署
|nodeenglishname=[[Has english name::Boosting_GBDT]]
|abbreviation=[[Has abbreviation::GBDT]]
|funcmaincategory=机器学习
|funcsubcategory=[[DataML Lv1 Cat::分类训练器]]
|nodecategory=数据挖掘
|nodeinterpretor=Python
|nodeshortdescription=<p>梯度提升树(Gradient Boosting Tree)是一种集成学习算法,通过迭代地训练弱学习器(通常是决策树),并将它们组合成一个强大的预测模型。与其他集成学习方法(如随机森林)不同,梯度提升树是通过优化损失函数的梯度来逐步改进模型的。</p>
|nodeinputnumber=2
|nodeoutputnumber=3
|nodeloopsupport=否
|nodeifswitchsupport=否
|nodeavailableplotlist=nodenoplotoutput
|nodeavailabletablelist=
|nodeconfiguration=
|nodeinputports=WorkFlow-Control ▶;Transfer-Table ■
|nodeoutputports=WorkFlow-Control ▶;Transfer-Table ■
|statsapewikiurl=https://wiki.statsape.com/梯度提升树
|previousnode=[[支持向量机]]
|nextnode=[[梯度提升树]]
}}
 
 
{{Navplate AlgorithmNodeList}}
 
[[Category:分类训练器]]

2023年12月4日 (一) 22:12的版本

Boosting GBDT.png
节点状态
PC可用
V1.0部署
梯度提升树
节点开发者决策链算法研发部 (Dev.Team-DPS)
节点英文名梯度提升树
功能主类别机器学习
英文缩写梯度提升树
功能亚类别分类训练器
节点类型数据挖掘
开发语言Python
节点简介

梯度提升树(Gradient Boosting Tree)是一种集成学习算法,通过迭代地训练弱学习器(通常是决策树),并将它们组合成一个强大的预测模型。与其他集成学习方法(如随机森林)不同,梯度提升树是通过优化损失函数的梯度来逐步改进模型的。

端口数量与逻辑控制(PC)
Input-入口2个
Output-出口3个
Loop-支持循环
If/Switch-支持逻辑判断
输入输出
可生成图片类型(推荐)
可生成数据表类型(推荐)
可配置参数例型
相关节点
上一节点支持向量机
下一节点梯度提升树


属性“Nodeicon”(作为页面类型)与输入值“File:”包含无效字符或不完整,并因此在查询或注释过程期间导致意外结果。


查找其他类别的节点,请参考以下列表