模板:Confusion matrix terms

来自决策链云智库
Zeroclanzhang讨论 | 贡献2024年1月25日 (四) 12:26的版本 (创建页面,内容为“<noinclude>{{Being deleted|2023 April 6|Template:Confusion matrix terms|merge=Template:diagnostic testing diagram}}</noinclude> {| class="wikitable floatright" width=35% style="margin-left:0.5em; padding:0.25em; background:#f1f5fc; font-size:98%;" |+ Terminology and derivations<br/>from a confusion matrix |- style="vertical-align:top;" | ; condition positive (P): the number of real positive cases in the data ; condition negative (N): the number of real nega…”)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)

Terminology and derivations
from a confusion matrix
condition positive (P)
the number of real positive cases in the data
condition negative (N)
the number of real negative cases in the data

true positive (TP)
A test result that correctly indicates the presence of a condition or characteristic
true negative (TN)
A test result that correctly indicates the absence of a condition or characteristic
false positive (FP), Type I error
A test result which wrongly indicates that a particular condition or attribute is present
false negative (FN), Type II error
A test result which wrongly indicates that a particular condition or attribute is absent

sensitivity, recall, hit rate, or true positive rate (TPR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{TPR} = \frac {\mathrm{TP}} {\mathrm{P}} = \frac {\mathrm{TP}} {\mathrm{TP}+\mathrm{FN}}= 1 - \mathrm{FNR}}
specificity, selectivity or true negative rate (TNR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{TNR} = \frac {\mathrm{TN}} {\mathrm{N}} = \frac {\mathrm{TN}} {\mathrm{TN} + \mathrm{FP}} = 1 - \mathrm{FPR}}
precision or positive predictive value (PPV)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{PPV} = \frac {\mathrm{TP}} {\mathrm{TP} + \mathrm{FP}} = 1 - \mathrm{FDR}}
negative predictive value (NPV)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{NPV} = \frac {\mathrm{TN}} {\mathrm{TN} + \mathrm{FN}} = 1 - \mathrm{FOR}}
miss rate or false negative rate (FNR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{FNR} = \frac {\mathrm{FN}} {\mathrm{P}} = \frac {\mathrm{FN}} {\mathrm{FN} + \mathrm{TP}} = 1 - \mathrm{TPR} }
fall-out or false positive rate (FPR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{FPR} = \frac {\mathrm{FP}} {\mathrm{N}} = \frac {\mathrm{FP}} {\mathrm{FP} + \mathrm{TN}} = 1 - \mathrm{TNR}}
false discovery rate (FDR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{FDR} = \frac {\mathrm{FP}} {\mathrm{FP} + \mathrm{TP}} = 1 - \mathrm{PPV} }
false omission rate (FOR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{FOR} = \frac {\mathrm{FN}} {\mathrm{FN} + \mathrm{TN}} = 1 - \mathrm{NPV} }
Positive likelihood ratio (LR+)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{LR+} = \frac {\mathrm{TPR}} {\mathrm{FPR}} }
Negative likelihood ratio (LR-)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{LR-} = \frac {\mathrm{FNR}} {\mathrm{TNR}} }
prevalence threshold (PT)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{PT}= \frac{\sqrt{\mathrm{FPR}}}{\sqrt{\mathrm{TPR}} + \sqrt{\mathrm{FPR}}} }
threat score (TS) or critical success index (CSI)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{TS} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN} + \mathrm{FP}}}

Prevalence
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \frac {\mathrm{P}} {\mathrm{P} + \mathrm{N}} }
accuracy (ACC)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{ACC} = \frac {\mathrm{TP} + \mathrm{TN}} {\mathrm{P} + \mathrm{N}} = \frac {\mathrm{TP} + \mathrm{TN}} {\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}} }
balanced accuracy (BA)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{BA} = \frac {\mathrm{TPR} + \mathrm{TNR}}{2} }
F1 score
is the harmonic mean of precision and sensitivity: 解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{F}_1 = 2 \times \frac {\mathrm{PPV} \times \mathrm{TPR}} {\mathrm{PPV} + \mathrm{TPR}} = \frac {2 \mathrm{TP}} {2 \mathrm{TP} + \mathrm{FP} + \mathrm{FN}}}
phi coefficient (φ or rφ) or Matthews correlation coefficient (MCC)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{MCC} = \frac{ \mathrm{TP} \times \mathrm{TN} - \mathrm{FP} \times \mathrm{FN} } {\sqrt{ (\mathrm{TP}+\mathrm{FP}) ( \mathrm{TP} + \mathrm{FN} ) ( \mathrm{TN} + \mathrm{FP} ) ( \mathrm{TN} + \mathrm{FN} ) } }}
Fowlkes–Mallows index (FM)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{FM} = \mathrm{\sqrt{\frac {TP}{TP+FP} \times \frac{TP}{TP+FN}} = \sqrt{ PPV \times TPR }}}
informedness or bookmaker informedness (BM)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{BM} = \mathrm{TPR} + \mathrm{TNR} - 1}
markedness (MK) or deltaP (Δp)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{MK} = \mathrm{PPV} + \mathrm{NPV} - 1}
Diagnostic odds ratio (DOR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{DOR} = \frac {\mathrm{LR+}} {\mathrm{LR-}} }

Sources: Fawcett (2006),[1] Piryonesi and El-Diraby (2020),[2] Powers (2011),[3] Ting (2011),[4] CAWCR,[5] D. Chicco & G. Jurman (2020, 2021, 2023),[6][7][8] Tharwat (2018).[9] Balayla (2020)[10]

  1. Fawcett, Tom (2006). "An Introduction to ROC Analysis" (PDF). Pattern Recognition Letters. 27 (8): 861–874. Bibcode:2006PaReL..27..861F. doi:10.1016/j.patrec.2005.10.010. S2CID 2027090.
  2. Piryonesi S. Madeh; El-Diraby Tamer E. (2020-03-01). "Data Analytics in Asset Management: Cost-Effective Prediction of the Pavement Condition Index". Journal of Infrastructure Systems. 26 (1): 04019036. doi:10.1061/(ASCE)IS.1943-555X.0000512. S2CID 213782055.
  3. Powers, David M. W. (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation". Journal of Machine Learning Technologies. 2 (1): 37–63.
  4. Ting, Kai Ming (2011). Sammut, Claude; Webb, Geoffrey I. (eds.). Encyclopedia of machine learning. Springer. doi:10.1007/978-0-387-30164-8. ISBN 978-0-387-30164-8.
  5. Brooks, Harold; Brown, Barb; Ebert, Beth; Ferro, Chris; Jolliffe, Ian; Koh, Tieh-Yong; Roebber, Paul; Stephenson, David (2015-01-26). "WWRP/WGNE Joint Working Group on Forecast Verification Research". Collaboration for Australian Weather and Climate Research. World Meteorological Organisation. Retrieved 2019-07-17.
  6. Chicco D.; Jurman G. (January 2020). "The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation". BMC Genomics. 21 (1): 6-1–6-13. doi:10.1186/s12864-019-6413-7. PMC 6941312. PMID 31898477.
  7. Chicco D.; Toetsch N.; Jurman G. (February 2021). "The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation". BioData Mining. 14 (13): 13. doi:10.1186/s13040-021-00244-z. PMC 7863449. PMID 33541410.
  8. Chicco D.; Jurman G. (2023). "The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification". BioData Mining. 16 (1): 4. doi:10.1186/s13040-023-00322-4. PMC 9938573. PMID 36800973.
  9. Tharwat A. (August 2018). "Classification assessment methods". Applied Computing and Informatics. 17: 168–192. doi:10.1016/j.aci.2018.08.003.
  10. Balayla, Jacques (2020). "Prevalence threshold (ϕe) and the geometry of screening curves". PLOS ONE. 15 (10): e0240215. arXiv:2006.00398. Bibcode:2020PLoSO..1540215B. doi:10.1371/journal.pone.0240215. PMC 7540853. PMID 33027310.