(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
%5B%5BWP%3ACSD%23G6%7CG6%5D%5D%3A+%5B%5BWikipedia%3ATemplates+for+discussion%2FLog%2F2023+April+6%23Template%3AConfusion+matrix+terms%5D%5D {{{CRITERION}}}
Terminology and derivations from a confusion matrix
condition positive (P)
the number of real positive cases in the data
condition negative (N)
the number of real negative cases in the data
true positive (TP)
A test result that correctly indicates the presence of a condition or characteristic
true negative (TN)
A test result that correctly indicates the absence of a condition or characteristic
false positive (FP), Type I error
A test result which wrongly indicates that a particular condition or attribute is present
false negative (FN), Type II error
A test result which wrongly indicates that a particular condition or attribute is absent
sensitivity , recall , hit rate , or true positive rate (TPR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{TPR} = \frac {\mathrm{TP}} {\mathrm{P}} = \frac {\mathrm{TP}} {\mathrm{TP}+\mathrm{FN}}= 1 - \mathrm{FNR}}
specificity , selectivity or true negative rate (TNR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{TNR} = \frac {\mathrm{TN}} {\mathrm{N}} = \frac {\mathrm{TN}} {\mathrm{TN} + \mathrm{FP}} = 1 - \mathrm{FPR}}
precision or positive predictive value (PPV)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{PPV} = \frac {\mathrm{TP}} {\mathrm{TP} + \mathrm{FP}} = 1 - \mathrm{FDR}}
negative predictive value (NPV)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{NPV} = \frac {\mathrm{TN}} {\mathrm{TN} + \mathrm{FN}} = 1 - \mathrm{FOR}}
miss rate or false negative rate (FNR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{FNR} = \frac {\mathrm{FN}} {\mathrm{P}} = \frac {\mathrm{FN}} {\mathrm{FN} + \mathrm{TP}} = 1 - \mathrm{TPR} }
fall-out or false positive rate (FPR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{FPR} = \frac {\mathrm{FP}} {\mathrm{N}} = \frac {\mathrm{FP}} {\mathrm{FP} + \mathrm{TN}} = 1 - \mathrm{TNR}}
false discovery rate (FDR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{FDR} = \frac {\mathrm{FP}} {\mathrm{FP} + \mathrm{TP}} = 1 - \mathrm{PPV} }
false omission rate (FOR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{FOR} = \frac {\mathrm{FN}} {\mathrm{FN} + \mathrm{TN}} = 1 - \mathrm{NPV} }
Positive likelihood ratio (LR+)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{LR+} = \frac {\mathrm{TPR}} {\mathrm{FPR}} }
Negative likelihood ratio (LR-)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{LR-} = \frac {\mathrm{FNR}} {\mathrm{TNR}} }
prevalence threshold (PT)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{PT}= \frac{\sqrt{\mathrm{FPR}}}{\sqrt{\mathrm{TPR}} + \sqrt{\mathrm{FPR}}} }
threat score (TS) or critical success index (CSI)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{TS} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN} + \mathrm{FP}}}
Prevalence
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \frac {\mathrm{P}} {\mathrm{P} + \mathrm{N}} }
accuracy (ACC)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{ACC} = \frac {\mathrm{TP} + \mathrm{TN}} {\mathrm{P} + \mathrm{N}} = \frac {\mathrm{TP} + \mathrm{TN}} {\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}} }
balanced accuracy (BA)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{BA} = \frac {\mathrm{TPR} + \mathrm{TNR}}{2} }
F1 score
is the harmonic mean of precision and sensitivity : 解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{F}_1 = 2 \times \frac {\mathrm{PPV} \times \mathrm{TPR}} {\mathrm{PPV} + \mathrm{TPR}} = \frac {2 \mathrm{TP}} {2 \mathrm{TP} + \mathrm{FP} + \mathrm{FN}}}
phi coefficient (φ or rφ ) or Matthews correlation coefficient (MCC)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{MCC} = \frac{ \mathrm{TP} \times \mathrm{TN} - \mathrm{FP} \times \mathrm{FN} } {\sqrt{ (\mathrm{TP}+\mathrm{FP}) ( \mathrm{TP} + \mathrm{FN} ) ( \mathrm{TN} + \mathrm{FP} ) ( \mathrm{TN} + \mathrm{FN} ) } }}
Fowlkes–Mallows index (FM)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{FM} = \mathrm{\sqrt{\frac {TP}{TP+FP} \times \frac{TP}{TP+FN}} = \sqrt{ PPV \times TPR }}}
informedness or bookmaker informedness (BM)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{BM} = \mathrm{TPR} + \mathrm{TNR} - 1}
markedness (MK) or deltaP (Δp)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{MK} = \mathrm{PPV} + \mathrm{NPV} - 1}
Diagnostic odds ratio (DOR)
解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“https://wikimedia.org/api/rest_v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathrm{DOR} = \frac {\mathrm{LR+}} {\mathrm{LR-}} }
Sources: Fawcett (2006),[1] Piryonesi and El-Diraby (2020),[2]
Powers (2011),[3] Ting (2011),[4] CAWCR,[5] D. Chicco & G. Jurman (2020, 2021, 2023) ,[6] [7] [8] Tharwat (2018).[9] Balayla (2020)[10]
↑ Fawcett, Tom (2006). "An Introduction to ROC Analysis" (PDF) . Pattern Recognition Letters . 27 (8): 861–874. Bibcode :2006PaReL..27..861F . doi :10.1016/j.patrec.2005.10.010 . S2CID 2027090 .
↑ Piryonesi S. Madeh; El-Diraby Tamer E. (2020-03-01). "Data Analytics in Asset Management: Cost-Effective Prediction of the Pavement Condition Index". Journal of Infrastructure Systems . 26 (1): 04019036. doi :10.1061/(ASCE)IS.1943-555X.0000512 . S2CID 213782055 .
↑ Powers, David M. W. (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation" . Journal of Machine Learning Technologies . 2 (1): 37–63.
↑ Ting, Kai Ming (2011). Sammut, Claude; Webb, Geoffrey I. (eds.). Encyclopedia of machine learning . Springer. doi :10.1007/978-0-387-30164-8 . ISBN 978-0-387-30164-8 .
↑ Brooks, Harold; Brown, Barb; Ebert, Beth; Ferro, Chris; Jolliffe, Ian; Koh, Tieh-Yong; Roebber, Paul; Stephenson, David (2015-01-26). "WWRP/WGNE Joint Working Group on Forecast Verification Research" . Collaboration for Australian Weather and Climate Research . World Meteorological Organisation. Retrieved 2019-07-17 .
↑ Chicco D.; Jurman G. (January 2020). "The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation" . BMC Genomics . 21 (1): 6-1–6-13. doi :10.1186/s12864-019-6413-7 . PMC 6941312 . PMID 31898477 .
↑ Chicco D.; Toetsch N.; Jurman G. (February 2021). "The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation" . BioData Mining . 14 (13): 13. doi :10.1186/s13040-021-00244-z . PMC 7863449 . PMID 33541410 .
↑ Chicco D.; Jurman G. (2023). "The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification" . BioData Mining . 16 (1): 4. doi :10.1186/s13040-023-00322-4 . PMC 9938573 . PMID 36800973 .
↑ Tharwat A. (August 2018). "Classification assessment methods" . Applied Computing and Informatics . 17 : 168–192. doi :10.1016/j.aci.2018.08.003 .
↑ Balayla, Jacques (2020). "Prevalence threshold (ϕe) and the geometry of screening curves" . PLOS ONE . 15 (10): e0240215. arXiv :2006.00398 . Bibcode :2020PLoSO..1540215B . doi :10.1371/journal.pone.0240215 . PMC 7540853 . PMID 33027310 .